Available online at www.sciencedirect.com
IITEIIITIOIAL HIUIIIL OF

science (g)oinscTe SOLIDS a
@ STHIIGTIIHES

www.elsevier.com/locate/ijsolstr

EILSEVIER International Journal of Solids and Structures 42 (2005) 1649-1667

A shear-lag model for carbon nanotube-reinforced
polymer composites

X.-L. Gao ®*, K. Li ®

& Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX 77843-3123, USA
° Department of Mechanical Engineering— Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive,
Houghton, MI 49931-1295, USA

Received 2 February 2004; received in revised form 22 August 2004
Auvailable online 13 October 2004

Abstract

A shear-lag model is developed for carbon nanotube-reinforced polymer composites using a multiscale approach.
The main morphological features of the nanocomposites are captured by utilizing a composite cylinder embedded with
a capped nanotube as the representative volume element. The molecular structural mechanics is employed to determine
the effective Young’s modulus of the capped carbon nanotube based on its atomistic structure. The capped nanotube is
equivalently represented by an effective (solid) fiber having the same diameter and length but different Young’s mod-
ulus, which is determined from that of the nanotube under an isostrain condition. The shear-lag analysis is performed
in the context of linear elasticity for axisymmetric problems, and the resulting formulas are derived in closed forms. To
demonstrate applications of the newly developed model, parametric studies of sample cases are conducted. The numer-
ical results reveal that the nanotube aspect ratio is a critical controlling parameter for nanotube-reinforced composites.
The predictions by the current analytical model compare favorably with the existing computational and experimental
data.
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1. Introduction

Carbon nanotubes have been identified as promising reinforcing materials for high-performance nano-
composites (e.g., Ajayan et al., 2000; Thostenson et al., 2001; Maruyama and Alam, 2002). To this end,
however, many critical issues are yet to be resolved, one of which is the lack of accurate understanding
of mechanisms of load transfer from the matrix to the nanotubes (e.g., Wagner, 2002).

Efforts have been made to assess the ability of stress transfer through the nanotube-matrix interface
(e.g., Wagner et al., 1998; Schadler et al., 1998; Qian et al., 2000; Lordi and Yao, 2000; Liao and Li,
2001; Frankland et al., 2002, 2003; Frankland and Harik, 2003; Barber et al., 2003). These studies, being
based on experimental measurements or molecular dynamics simulations, tend to be expensive and config-
uration/material specific. The use of continuum-based models can mitigate these difficulties (e.g., Odegard
et al., 2002; Zhang et al., 2002; Li and Chou, 2003a; Gao and Li, 2003; Pantano et al., 2004) and is, there-
fore, very desirable. The interfacial shear strength in polymer composites reinforced by single-walled car-
bon nanotubes has recently been estimated by Wagner (2002) using a modified Kelly-Tyson approach
that is continuum-based and assumes uniform interfacial shear and axial normal stresses. More recently,
a continuum-based computational model for interfacial stress transfer in nanotube-reinforced polymer
composites has been developed by Li and Chou (2003b), which employs the molecular structural mechanics
proposed by the same authors (Li and Chou, 2003a) to characterize the nanotube and the finite element
method to model the polymer matrix. This study sheds new light on the understanding of the load transfer
across the nanotube-matrix interface and provides needed guidance for the development of analytical
models.

The stress transfer problem for traditional fiber-reinforced composites has been extensively studied. The
shear-lag model originally proposed by Cox (1952) provides a good estimate of the stresses in the fiber
transferred from the matrix through the interface. However, this analytical model cannot be directly
applied to characterize nanotube-reinforced composites, since it considers the load transfer across the
curved interface only and regards the fiber ends as traction-free. In addition, some important morphologi-
cal features of nanotube-reinforced composites are not incorporated in existing shear-lag models. It is
known that the efficiency of the nanotube reinforcement depends sensitively on the morphology (including
diameter, wall thickness and chirality) and distribution of the nanotubes (e.g., Thostenson and Chou,
2003). This necessitates the incorporation of atomistic structures of carbon nanotubes in developing
continuum-based analytical models of shear-lag type for nanotube-reinforced composites.

The objective of the current study is to develop such a shear-lag model using a representative volume
element (RVE) of a concentric composite cylinder embedded with a capped carbon nanotube. The rest
of the paper is organized as follows. In Section 2, the molecular structural mechanics of Li and Chou
(2003a), together with the matrix method for spatial frames (e.g., Li et al., 2003), is first employed to predict
the effective Young’s modulus of the nanotube. The capped nanotube is then replaced by an effective (solid)
fiber, whose length and diameter are kept to be the same as those of the nanotube to preserve the essential
morphological features of the nanocomposite. The Young’s modulus of the effective fiber is subsequently
determined under an isostrain condition. This is followed by the development of the shear-lag model in Sec-
tion 3 using the cylindrical RVE. In Section 4, sample numerical results are presented to demonstrate appli-
cations of the newly developed model. The paper concludes with a summary in the fifth and last section.

2. Capped nanotube as an effective fiber
After numerous efforts by many researchers, it has become possible to fabricate nanotube-reinforced

polymer composites with well-dispersed and well-aligned nanotubes (e.g., Haggenmueller et al., 2000;
Bower et al., 2000; Thostenson and Chou, 2002; Cooper et al., 2002). As a first step toward simulating such
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Fig. 1. Model nanocomposite.
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Fig. 2. RVE of the model nanocomposite.

composites using continuum-based analytical approaches, consider a model composite reinforced by uni-
formly distributed and perfectly aligned identical nanotubes, as shown in Fig. 1. The representative volume
element (RVE) of the composite is sketched in Fig. 2, where the nanotube with two end caps is regarded as
perfectly bonded to the matrix and located at the center of the RVE, with both the matrix and the nanotube
phases being isotropic. The cylindrical RVE of this type has been adopted earlier by Li and Chou (2003b),
but in their model the nanotube is assumed to be uncapped.

The shear-lag model to be developed will be based on the RVE shown in Fig. 2. The development of this
continuum model requires that the structurally discrete nanotube be replaced by a continuum phase. To
this end, the capped nanotube embedded in the matrix will first be represented as an effective (solid) fiber,
whose Young’s modulus is determinable from that of the nanotube. The latter will be predicted using the
molecular structural mechanics approach advanced by Li and Chou (2003a), which incorporates the ato-
mistic structure of the nanotube and is based on the equivalence of the strain energy and the molecular
potential energy.

A fairly large number of studies have been conducted to predict elastic properties of carbon nanotubes
without caps. In contrast, very limited attention has been paid to capped nanotubes, although numerous
experiments indicate that carbon nanotubes are usually closed at both ends (Harris, 1999). This is partially
due to the complexity associated with nanotube capping. For example, it has been shown by Fujita et al.
(1992) that only nanotubes that are larger than the archetypal (5,5) and (9,0) tubes are capable of being
capped, and that the number of possible caps grows significantly with the increase of the nanotube
diameter.

The chirality and diameter of a nanotube can be uniquely determined by the roll-up (chiral) vector (m, n)
(e.g., Saito et al., 1993; Thostenson et al., 2001), where m and n are non-negative integers representing the
number of steps along the zigzag carbon bonds of the hexagonal lattice. A carbon nanotube designated by
(m,n) is generally chiral, unless m =n or n =0 to become an armchair or zigzag nanotube.

A capped carbon nanotube (graphene tubule) may be formed by adding hexagons between two hemi-
spheres cut from an icosahedral fullerene, which corresponds to a spherical Goldberg polyhedron
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(Fujita et al., 1992). Through defining a chiral vector (my, ny) for specifying an icosahedral fullerene, where
me and ny are non-negative integers, the total number of atoms for the fullerene is given by
20(m? + meng + n?). When my = ng or mg ng= 0, two groups of fullerenes with the icosahedral symmetry
(1) are obtained, i.e., the series of Cgy, Cay9, - . -, C60,,'g and the series of Cy, Cyg, . . ., Czong (where C,q is una-
ble to nucleate a tubule). In other cases, the fullerenes have the 7 symmetry (which is a subset of 1, involving
no inversion operation). The carbon nanotube that nucleates from two halves of a fullerene can be desig-
nated by (5my, Snr). Another group of zigzag nanotubes, i.e., (9,0),(18,0), .. .,(910), can be capped by hem-
ispheres cut from icosahedral fullerenes Cgy, Coa, ..., Coon2 which correspond to the chiral vectors
(1,1),(2,2),...,(ngny), in a direction perpendicular to one of the three-fold axes (Saito et al., 1992). The caps
for armchair nanotubes (5, 5),(10,10),. . .,(5n, Sng) are obtained by bisecting the same group of fullerenes in
a direction perpendicular to one of the five-fold axes (Saito et al., 1992). Halves of fullerene Cg, could cap
armchair nanotube (5, 5) or zigzag nanotube (9,0), the two smallest carbon nanotubes that can be capped.

Using molecular dynamics (MD) simulations, Yao and Lordi (1998) modeled capped single-walled and
multi-walled carbon nanotubes with armchair chirality. By assuming that nanotubes are made of a contin-
uum and employing Harrison’s tight-binding model, Glukhova et al. (2003) estimated the average Young’s
modulus of capped zigzag carbon nanotubes. However, molecular dynamics and tight-binding methods
typically involve extensive computations and, therefore, are limited to modeling systems embracing a small
number of atoms and undergoing a short period of time. In contrast, the molecular structural mechanics
(MSM) approach developed by Li and Chou (2003a) is computationally efficient. By viewing a nanotube
as a spatial frame, the covalent bonds between carbon atoms as equivalent structural beams and individual
atoms as joints, they showed that a linkage between structural mechanics and molecular mechanics can be
established. Then, the cross-sectional parameters of the equivalent beams (with circular cross-sections),
which are required to form the elemental stiffness matrices for structural mechanics analysis based on
the matrix method for spatial frames, can be determined from the equivalence of the corresponding steric
potential energies of atomic bonds and elemental strain energies of structural beams. Therefore, the MSM
approach of Li and Chou is employed here to calculate the effective Young’s modulus of each capped sin-
gle-walled carbon nanotube. The computer program developed by Li et al. (2003) for the matrix method in
a more general context is used in the calculation to determine the displacements at unrestrained joints.

Three capped armchair nanotubes, i.e., (5,5), (10, 10) and (15, 15), and five capped zigzag nanotubes, i.e.,
(9,0), (10,0), (15,0), (20,0) and (25,0), with different values of axial length, are considered in the current
study. The force field constants are taken to be k,/2 = 469 kcal-mol_lA_z, ky/2 = 63kcal - mol ' rad >
and k./2 = 20kcal -mol~'rad 2, and the initial carbon—carbon bond length to be 0.1421 nm, all as initially
used in Li and Chou (2003a). Due to symmetry, only half of a nanotube needs to be modeled, as shown in
Fig. 3. Also, the open end may be reviewed as a fixed support with no displacement or rotation. By applying
a concentrated axial force F to each of the joints on the cap, the Young’s modulus of the nanotube, E;, can
be determined as

(b)
Fig. 3. Half of a capped nanotube: (a) armchair (b) zigzag.
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where « is the outer radius of the nanotube, ¢ is the tube wall thickness [taken to be 0.34nm, the interlayer
spacing of graphite sheets, as was done in Li and Chou (2003a)], L; is the length from the open end to the
tube-cap intersection, AL, is the axial displacement of each joint at the intersection that is obtained using
the matrix method mentioned above, and f is the total number of joints on the cap including those at the
intersection. With the involvement of ¢ in Eq. (1), the degree of hollowness of the nanotube is automatically
accounted for in determining E..

The predicted values of Young’s modulus (E;) versus the aspect ratio (L/a) for uncapped nanotubes are
presented in Figs. 4 and 5. From these two figures, one can observe that the trend of E; varying with L/a is
similar for both the armchair and zigzag nanotubes. It is also seen that E increases rapidly with L;/a when
L/a <10, beyond which E, remains almost constant. A further inspection of these two figures indicates that
E, increases monotonically with the nanotube diameter.

For capped nanotubes, as shown in Figs. 6 and 7, the trend of E; varying with L/a is similar to that of
the uncapped nanotubes. The aspect ratio L/a has little influence on E; for armchair nanotubes (see Fig. 6).

—0—(5,5)
—8—(10,10)
—— (15,15)

Fig. 4. Young’s modulus of uncapped nanotubes (armchair).
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Fig. 5. Young’s modulus of uncapped nanotubes (zigzag).
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Fig. 6. Young’s modulus of capped nanotubes (armchair).
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Fig. 7. Young’s modulus of capped nanotubes (zigzag).

For zigzag nanotubes, E; increases with L/a when L/a is small, but remains almost constant when L./
a > 20 (see Fig. 7). The increasing rate (i.e., slope) here appears to be smaller than that of the corresponding
uncapped zigzag nanotube (see Figs. 5 and 7).

When Li/a is fixed, the effect of the nanotube diameter 2a on E is shown in Fig. 8. It is seen that the
armchair nanotubes are stiffer than the zigzag nanotubes and the difference in Young’s modulus is reduced
as 2a increases, which agrees with the earlier findings by Popov et al. (2000) based on a lattice dynamics
model and Chang and Gao (2003) using molecular mechanics. From Fig. §, one can also observe that
for armchair nanotubes the capped ones are slightly stiffer than the uncapped ones when 2a < 1.3nm,
and that the stiffness difference decreases as 2« increases. For zigzag nanotubes, the differences in Young’s
modulus of the capped and uncapped ones are negligibly small. These observations indicate that the effect
of capping is insignificant for sufficiently long and large nanotubes.

With the effective Young’s modulus of the nanotube determined based on its atomistic structure, the
nanotube embedded in the matrix can then be replaced by an effective (solid) fiber having the same length
and outer diameter as those of the nanotube (see Fig. 9). The latter are adopted to preserve the morpho-
logical features of the nanotube as the reinforcing phase. As a result, the elastic properties of the effective
fiber will differ from those of the nanotube and need to be determined separately. Under an isostrain con-
dition, the effective Young’s modulus of the effective fiber, E', can be readily obtained as

1.05
1.04
T 103
e —a— armchair-uncapped
ur 102 —&— zigzag-uncapped
1.01 —a— armchair-capped
—8—1Zi gzag-capped

1 T T
0 05 1 1 5 2 2 5
2a (nm)

Fig. 8. Young’s modulus of nanotubes (L/a = 50).
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Fig. 9. Nanotube as an effective fiber.
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Fig. 10. Young’s modulus of effective fibers (armchair).
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Fig. 11. Young’s modulus of effective fibers (zigzag).

Table 1

Diameter and Young’s modulus of the effective fiber

Armchair 2a (nm) E' (TPa) Zigzag 2a (nm) E' (TPa)

(5,5) 0.6834 1.035 9, 0) 0.7086 1.006

(10,10) 1.3594 0.779 (10, 0) 0.7866 0.995

(15,15) 2.0370 0.578 (15, 0) 1.1774 0.845
(20,0) 1.5684 0.702
(25, 0) 1.9598 0.594

2 2
¢ at—(a—1t)
E=L 2"V E, 2)

a

In obtaining Eq. (2) use has also been made of the condition that the axial load carried by the effective fiber,
P, is the same as that by the nanotube. The isostrain approximation invoked here is consistent with the
shear-lag analysis to be presented next. With both the outer radius (a) and the wall thickness (¢) of the
nanotube involved in Eq. (2) as two independent variables, the hollowness of the nanotube is directly incor-
porated in the determination of E'.

The calculated values of E' as a function of L,/a are shown in Figs. 10 and 11. Both figures clearly indicate
that the larger the tube diameter is the lower E' becomes, while L,/a has negligible effect on E'. For convenience
of later reference, the values of E' for the different nanotubes considered are also listed in Table 1.

3. Shear-lag model for the nanocomposite

The classical shear-lag model originated by Cox (1952) was later elucidated by McCartney (1992) and
Nairn (1997) in the context of linear elasticity. However, in their concentric cylinder models the fiber
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Fig. 12. RVE for the nanocomposite.

2L

and the matrix layer are equally long and the fiber ends are treated as traction-free fiber breaks (cracks). As
a result, their models cannot be directly applied to the configuration shown in Fig. 2 or Fig. 12. This neces-
sitates the current shear-lag formulation using the theory of elasticity. Since the purpose of the shear-lag
analysis is to describe the mechanisms of load transfer across the entire nanotube-matrix interface, which
can be viewed as a global response, the use of continuum mechanics (elasticity) should lead to fairly accu-
rate simulations (Liu and Chen, 2003). In fact, several elasticity-based models have been shown to be capa-
ble of accurately predicting the global properties of nanostructured materials (e.g., Lourie et al., 1998;
Govindjee and Sackman, 1999; Ru, 2000; Harik, 2001, 2002; Lilleodden et al., 2003).

The derivations presented here are built upon the earlier works of McCartney (1992) and Nairn (1997),
and, therefore, the three major assumptions inherent in a shear-lag analysis, which are also invoked in the
current formulation (see Eqgs. (12), (19), (22) and (28) below), will not be discussed any further. The formu-
lation is based on the RVE illustrated in Fig. 12, where the effective fiber (continuum) has replaced the
capped nanotube (discrete) (see Figs. 2 and 9).

The governing equations for the axisymmetric problem, in a displacement formulation and in terms of
the polar coordinates (r,6,z), include the equilibrium equations (in the absence of body forces):

aO-rr a‘L'rz O — 000 o aTrz aO-zz Trz

2 700 Z -0 3a,b
or Oz r ’ 6r+az+r ’ (3a,b)
the geometrical equations:
Ou u ow Ou Oow
o = A 00 = 2z = A = A_ T AL 4a-d
¢ or b0 r & Oz 4 Oz + or (4a-d)
and the constitutive equations:
1
Err = E [O-rr - V(O-()O + Gzz)]a &0 = E [6()0 - v(o-zz + Grr)]v
1 . (5a—d)
&z = E [Gzz - V(Jrr + gﬁ@)]a Ve = g .

In Egs. (3a,b)~(5a—d), 6,., 699, 0. and 7, are stress components, &,,, &gy, &-- and y,. are strain components, u
and w are, respectively, the radial and axial displacement components, and E, v and G are, respectively, the
Young’s modulus, Poisson’s ratio and shear modulus of the material. These three sets of equations are
applicable to both the effective fiber and the matrix.

The boundary conditions for this problem are given by

", =0, t"_,, =oes, (6a,b)
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and the interfacial traction continuity conditions by

tf|r:a,7L1§z<Ll = tm|r:a¢L[<z<Ll’ tf|z:iL1«,O<r§a = tm|z:iLl,0<r<a’ (7a’b)

where t is the traction vector, ¢ is the axial normal stress uniformly applied on z = + L, and the superscripts
f, m denote, respectively, the effective fiber and the matrix.

The exact solution of the boundary-value problem defined by Eqgs. (3a,b)—(7a,b) for the current compos-
ite cylinder problem involving the two phases with finite dimensions (see Fig. 12) can hardly be obtained. In
fact, no closed-form solution has been derived even for the simpler problem of a finite composite cylinder
without the two pure matrix regions using elasticity (Smith and Spencer, 1970; Wu et al., 2000). Hence, an
approximate solution of the shear-lag type will be sought here, which satisfies, exactly or on average, the
governing equations in the longitudinal direction. The derivation will be done separately for the reinforced
region (—L; < z < L) and the pure matrix regions (—L < z< —Lyand L, <z < L).

3.1. Solution in the reinforced region (—L, <z < L)

Note that Eq. (3b), which is the equilibrium equation in the z-direction, can be integrated with respect to
r from 0 to a to give, for the effective fiber,

a f a
! 0oy (2nr)dr + RS /0 1o (rrfz) (2nr)dr = 0. (8)

na? J, Oz na’ r or

The average axial normal stress over the cross-section of the effective fiber can be defined as

_ 1 a

f = f

Gzz(z) - naz /0 O-zz(r7z) (znr)dr’ (9)
Then, Eq. (8) becomes, with the use of Eq. (9),

dof 2

= 10

== g, (10)
where

Ti *Trz r=a (11)

is the interfacial shear stress (on the curved interface r = a), which is a function of z.
To determine ¥ using the interfacial shear stress 7;, assume that

aG; —
() (12)

z

where f{z) is a function yet to be determined. Then, using Eq. (12) in Eq. (3b) and integrating with respect to
r from 0 to r will lead to

1
r;:—zrf(z), (13)
where use has been made of the fact that both ', and f{z) are finite at r = 0. By applying Eq. (11) to Eq.
(13), fiz) and thus 7! will then be determined as

fz) = —%ri(z), = 21,—. (14a,b)

rz

In component form, Eq. (6a) becomes
oplr =0, g =0, (15a,b)
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and Eq. (7a) reads
f ™ (16a,b)

_ m f _
rrlr=a,—Li<z<Li ~— orr r=a,—Li<z<L¢? Tzr|r:a,7Lx<z<L‘ — Yzrir=a,—Li<z<L®

g

Now integrating Eq. (3b) with respect to r from a to R yields for the matrix, with the use of Egs. (11), (15b)
and (16b),

de™  2a

iz R—-a" (a7
where
1 R
on(z) = m /a o2 (r,z)(2nr)dr (18)
is the average axial normal stress over the cross-section of the matrix layer.
Similar to that for determining <. (see Eq. (12)), it is assumed that
oo
o 19
o= = (o) (19)

where g(z) is a yet-unknown function. Substituting Eq. (19) into Eq. (3b) and integrating with respect to r
from r to R will yield, with the help of Eq. (15b),

2
@ =3 (5 -r)ee 20)
It then follows from Egs. (20), (16b) and (11) that
2a m a R’
g(2) mez‘(z)» TR _p2 (7—V>Ti- (21a,b)

Next, assume that for both the effective fiber and matrix,

Ou ow
> al (22)
This leads to, using Egs. (4d) and (5d),
ol ow™
f _ " m __ v
7. =G 5 G" 5 (23a,b)
Combining Egs. (21b) and (23b) and integrating with respect to » from a to R will result in
- R* — & 1 m m
Ti(Z):G a Rzlng_%(Rz_az) (WR _Wa )’ (24)
where
W= e D =, (25a.b)
Using Eq. (24) in Eq. (21b) then gives

(Wi —wm) R?
m=Gg" 4 ——=r. 26
Tz Ri-IR-a)\r (26)
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Substituting Eq. (26) into Eq. (23b) and integrating with respect to r from « to r will lead to

R*Inz—1(r—a)

RInf—1(R* - a?)

wh(r,z) = wi + (Wi —wih). (27)

a

To obtain ¢™, it is further assumed that for both the effective fiber and the matrix,

zz?

O+ 0y K 0. (28)
It then follows from Egs. (4c), (5¢) and (28) that
ow' ow™
f _ ot m__ pmZ>~"
o, =F 5 0= E & (29a,b)

Using Eq. (27) in Eq. (29b) gives

RInt—1(? —a?)

ol =0+ ol _p — o), 30

zz i R21n§7%(R27a2)( zzlr=R 1) ( )
where

or=al,, (31)

is the axial normal stress on the interface r = a. To find ¢, _,
cylinder along the z-direction:

a R
nRz(r:/O Jﬁz(2m’)dr—|—/ o2 (2nr)dr. (32)

Using Egs. (9) and (30) in Eq. (32) and carrying out the algebra will yield

consider the force balance of the composite

m m RInf— (R - d) 2 b 2 2\ m
O, lr=k = 0; +R4ln§—}—‘(R2—a2)(3R2—a2) |:RO'—(10'£Z—(R _a)o-i:|' (33)
From Egs. (10), (24), (29b), (31) and (33) it follows that
d*el 1 R -4 1 _
Z = — R’ — d’a’. — (R* — a*)a™|. 34
dz2 1 4 ym a2 R4ln§—}¢(R2—a2)(3R2—a2){ 0—ao, ( a)o-z} ( )
Note that perfect bonding implies that
8?21 r=a = Ciz r=a’ (35)

This condition would remain the same if it were to be expressed in terms of the axial normal strain in the
nanotube because of the isostrain condition invoked earlier in obtaining E' from E, (see Eq. (2)). Using Egs.
(4¢), (29a,b) and (31) in Eq. (35) then gives
f Ef m
Gzz r=a ﬁ Ji .
Considering that the diameter of the nanotube (and thus of the effective fiber) is very small, it is assumed
that ¢’ (r,z) can be represented, with good accuracy, by its average o_ﬁz(z). Then, Eq. (36) becomes

(36)

m E" —
o; :FJEZ. (37)
Substituting Eq. (37) into Eq. (34) leads to
dZT - 2R2
A e o, (38)

dz? = @ +5 (R —a)
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where
. R — & a+5 (R - )
L+w a2 R'Inf—L(R*—a)(3R* —a?)

The general solution of Eq. (38) is given by
R2

f — oz —oz
o —ce et —
= a® + EFT (R* — a?)

o, (40)

where ¢; and ¢, are two constants to be determined from the boundary conditions.
Using Eq. (40) in Eq. (10) yields

T = —ga(cle“z — e ). (41)
The substitution of Egs. (33), (37) and (40) into Eq. (30) leads to
) [R2Inz—1(? — )| R Em [az +E& (R - az)} [R*Inz—1(” —a?)]
=T RN R -G —a)  |E RhE-LR )R —a)
R2
X |c1€% + ™% + ma (42)
Finally, the use of Eq. (41) in Eq. (14b) gives
o= — % (c16” — e ™ )r, (43)
and Eq. (41) in Eq. (21b) results in
™= ﬁ (RTZ - r) (c1e” — ™). (44)

Clearly, the interfacial shear stress t; and the stress components a_(z), 7", ¢™ and t™ in the effective fiber
and the matrix in the reinforced region (—L, < z < L) will be completely determlned from Egs. (40)—(44)
once the constants ¢; and ¢, have been found. The determination of ¢; and ¢, requires the use of the solu-

tion in the pure matrix regions.
3.2. Solution in the pure matrix regions (—L <z< —Liand Ly <z<L)

Each of the two pure matrix cylinders at the ends of the RVE may still be viewed as a composite cylinder
reinforced by a virtual fiber having the same diameter as that of the effective fiber (or nanotube) and the
same Young’s modulus and Poisson’s ratio as those of the matrix material. As a result, the solution derived
above for the composite region (—L; < z < L;) can be applied to the pure matrix regions (—L < z < —L;
and L, < z < L) by replacing E" with E™. Hence, from Eq. (40) it follows that, with £ = E™

fm OmZ —0mZ
oM = c3e™ 4 cqe™ + g, (45)

where the superscript fm refers to the virtual fiber, ¢3 and ¢4 are two unknown constants, and o, is obtained
from Eq. (39), with Ef = E™, as
5 1 R-4 R’

= . 46
O 1 4+ ym a2 R4ln§—%(R2—a2)(3R2—a2) ( )
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The use of Egs. (10) and (45) in Eq. (14b) gives

. 7 B
fm —7ocm(C3e“"‘Z — C4€ amz).

r 3
Note that in component form Eq. (6b) reads

ol =0, Ty =0,
and Eq. (7b) becomes

6£z|z:il‘l40<r<a = 0-2|z::tL[,0ér<a? sz =4[ ,0<r<a T z=+L,0<r<a
Applying Eq. (48a) to Eq. (45) gives

3 =c4 =0,
which leads to, upon its substitution into Egs. (45) and (47),

@ =0, T,frzn =0.

Clearly, Eq. (48D) is satisfied by the shear stress component given in Eq. (51b).
Next, using Eqgs. (40) and (51a) in Eq. (49a) yields

o 1 R?
¢ = - .
>~ 2cosh(aL,) @ +5 (R —a)

Cc1 =

1661

(47)

(48a,b)

(49a.,b)

(52)

The substitution of Eq. (52) into Egs. (40)—(44) will then lead to the stress components in the reinforced

region (—L, < z < L,). The results give

— R’ R’ cosh(oz)
0z = 2 L E™ (p2 2 + 1= 2 E™(p2 2 g,
a’+E (R° — a?) a> + 5 (R* — a?) | cosh(oL)

_axsinh(az) (R —a*) (1 - %)
© T 2cosh(al) & + B (R* — a?)

2 m
g T sinh(oz) (R — a2)<1 - g_f)
# " 2cosh(aL) a®+Lr(R* —a?)

[R*Inz—1(”? —a*)|R’ 2

o+

Em [az +5 (R - az)} [R*InZ—1( —d?)]

=T R mE— LR — 2)(3R — &) E Rni-LR-)(R-a)

R? R? cosh(oz)
XN a2 nt - 2 E"(p2 2 s
a +F(R —a?) a +F(R — a?) | cosh(aLy)

. asinh(wz) @ (1 - EE_:‘) R?
= ——r
bz 2cosh(ali) a® + 5 (R —a?) \ r 7

(53a)

(53b)

(53¢)

(53d)

(53e)

where the hollowness of the nanotube is accounted for through E' (see Eq. (2)). The stress components in
the two pure matrix regions can then be readily obtained from Egs. (53a—¢) by letting E = E™. The results

give
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f
om=¢"=g¢g, 10=1=10=0, (54a,b)

rz

which represent a homogeneous deformation induced by the uniform uniaxial tension, as expected.

4. Numerical results

To illustrate the shear-lag model developed in the preceding section, parametric studies are conducted
for nanotube-reinforced polymer composites using the newly derived formulas. Sample numerical results
are presented below.

Fig. 13 shows how the normalized interfacial shear stress and average axial normal stress in the nanotube
vary along the nanotube length for three cases having different nanotube aspect ratios (ARs). To compare
with the corresponding results of Li and Chou (2003b), values of the controlling parameters for the com-
posite under consideration are taken to be the same as those used in Li and Chou (2003b), i.e., E™ =2.41
GPa, v™ = 0.35, E' = 1000 GPa, a = 0.471 nm, and R = 5a. The first two matrix material properties are typ-
ical for an epoxy polymer. A comparison shows that in all of the three cases (with different aspect ratios)
considered the trends of both t;/o and of /o varying with z/(2a), as predicted by the current shear-lag
model, are the same as those predicted by the computational model of Li and Chou (2003b). Moreover,
the magnitudes of both t,/c and a_ﬁz/ o predicted respectively by the two different models are not too far
apart, which can be difficult to achieve in continuum-based simulations of nanostructured materials
(e.g., Liu and Chen, 2003). These agreements verify the feasibility of the current model.

To further demonstrate applications of the new model, a second nanocomposite is considered. At this
time the properties of the polymer matrix are taken to be the same as those used above (i.e., E™ = 2.41 GPa,
V™ = 0.35), but the Young’s modulus of the effective fiber is now E' = 1006 GPa, which represents the (9,0)
zigzag nanotube with the outer diameter 2a = 0.7086 nm, as listed in Table 1. Again, R = 54 and the same
three aspect ratios are used in the current simulation. The results are illustrated in Figs. 14-17.

AR=12.8

z2a
z2a

0 20 40 60

(@ 5lo (b) o.lo

Fig. 13. Interfacial shear stress (a) and average axial normal stress in the nanotube (b).
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Fig. 15. Shear stress in the matrix (with AR = 12.8).
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Fig. 16. Average axial normal stress in the nanotube.
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Fig. 17. Average axial normal stress in the matrix.

The variation of the interfacial shear stress along the nanotube length is illustrated in Fig. 14, while
that of the shear stress in the matrix in Fig. 15. From Fig. 14 it is seen that the maximum shear stress
transfer occurs near the two ends of the nanotube, but the middle of the nanotube is shear stress free
due to symmetry. Also, the larger the aspect ratio is, the smaller the interfacial shear stress (at the same
z and for given a and o) becomes. These agree with those observed in Li and Chou (2003b). Fig. 15
shows that the same is true for the shear stress distribution in the matrix: the maximum of the shear
stress occurring at the ends and the minimum (zero-valued) in the center of the reinforcing length
(i.e., at z=0). In addition, it is observed from Fig. 15 that the shear stress 72 decreases rapidly with
the increase of the radial distance from the nanotube-matrix interface and that the traction-free bound-
ary condition on the outer surface of the matrix layer (i.e., r/a=5= R/a) is exactly satisfied, as
expected.

Fig. 16 shows the distribution of the average axial normal stress in the nanotube along the nanotube
length, while Fig. 17 illustrates that of the average axial normal stress in the matrix. Clearly, it is observed
from Fig. 16 that the maximum axial normal stress is reached in the middle of the nanotube, whereas the
minimum occurs at its two ends. Also, it is seen that the larger the aspect ratio, the higher the average axial
normal stress at the same z for given a and ¢. The opposite trends are seen for the average normal stress in
the matrix, as shown in Fig. 17. In fact, this is dictated by the global equilibrium requirement. More
importantly, it can be noticed from comparing Figs. 16 and 17 that when the nanotube aspect ratio is suf-
ficiently large, most of the applied load in the axial direction can be taken up by the nanotube and the
surrounding matrix needs to support only a small portion of the axial loading. For example, when
AR = 12.8 the portion of the applied load taken by the nanotube on the cross-section z = 0 is more than
three times as large as that by the matrix on the same cross-section, although the cross-sectional area of the
matrix is twenty-four times as big as that of the effective fiber on z =0 in the current RVE with R = 5a.
However, this is no longer the case if the nanotube aspect ratio becomes small. For instance, when
AR = 7.8 both of the nanotube and the matrix on the cross-section z =0 take about the equal amount
of the applied load. These reveal that the nanotube aspect ratio is a critical controlling parameter for nano-
tube-reinforced composites, and that for significant reinforcements nanotubes with large aspect ratios
should be used. This observation conforms to what has been found in existing experimental and compu-
tational studies (e.g., Qian et al., 2000; Frankland et al., 2003), thereby further supporting the newly devel-
oped analytical model.
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5. Summary

A shear-lag model for predicting the interfacial stress transfer in carbon nanotube-reinforced polymer
composites is developed using a multiscale approach. A concentric composite cylinder embedded with a
capped nanotube is utilized as a representative volume element (RVE) to capture the major morphological
features of the nanocomposites. The atomistic structure of the capped nanotube is incorporated in the
model by using the molecular structural mechanics of Li and Chou (2003a), which leads to the determina-
tion of the effective Young’s modulus of the nanotube. The capped nanotube is equivalently replaced by an
effective (solid) fiber having the same diameter and length, whose elastic modulus is determined from that of
the nanotube under an isostrain condition. The continuum-based shear-lag analysis is carried out using the
elasticity theory for axisymmetric problems, which results in closed-form formulas for calculating the inter-
facial shear stress and other axial stress components in both the nanotube and the matrix.

The formulas are directly applied to sample cases to demonstrate the newly developed model. The
numerical results show that the predictions by the current analytical model are in qualitative agreement
with those by the computational model of Li and Chou (2003b). The numerical data also reveal that the
nanotube aspect ratio plays a critical role in designing the nanotube-reinforced polymer composites, and
that the nanotubes with sufficiently large aspect ratios should be used to achieve better reinforcements.
These agree with the findings from earlier experimental and computational studies.

Finally, it should be mentioned that replacing the capped nanotube (discrete) by an effective fiber
with square ends (continuum) is to make the problem analytically tractable in the context of elasticity.
The effect of the caps on Young’s modulus of the capped nanotube (E,) is incorporated in Eq. (1) through
the parameter f. This effect is subsequently included in the determination of the modulus of the effective
fiber (E") using Eq. (2) and then in the computation of the stress components using Egs. (53a—¢). However,
the use of square ends (rather than hemispherical ones) does lead to over-predicted stress concentrations
near the two ends of the nanotube, as was also observed by Li and Chou (2003b). This remains to be a
major limitation of the new model. Nevertheless, the predicted stress distributions far away from the
two tube ends should be fairly accurate, since typical nanotubes tend to have very large aspect ratios
and the end effects are localized. In fact, it has been observed in the present study that the effect of capping
on the elastic modulus of the nanotube is insignificant for sufficiently long and large nanotubes (see Fig. 8).
Moreover, the current analysis, as an upper-bound estimate, would lead to conservative designs of
nanotube-reinforced polymer composites.
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